제목: Ultimate Guide to JSON Parsing With Swift 4

스위프트4와 Foundation은 마침내 스위프트에서 JSON을 파싱하는 질문에대한 대답을 내놓았다.

파싱을 위한 훌륭한 라이브러리들이 많이 있었지만, 이렇게 적용하기 쉬울뿐 아니라 복잡한 시나리오에따라 커스터마이징이 가능한 솔루션은 꽤나 신선하다.

여기서 말하는 모든 것들을 어떤 Encode/Decoder 구현에 적용해보는 것은 의미없는 일이며, PropertyListEncoder도 마찬가지이다. 여러분이 XML같은 다른게 필요하면 커스텀 구현을 만들수도 있다. 이 블로그 포스트에서는 JSON 파싱에대해 초점을 맞추게 될것인데, 이것이 가장 많은 iOS 개발자와 연관되었기 때문이다.

기본
여러분의 JSON 구조와 오브젝트가 비슷한 구조를 가진다면 일은 쉽게 풀린다.

아래에는 맥주에대한 JSON 문서 예시이다.
{
   "name": "Endeavor",
   "abv": 8.9,
   "brewery": "Saint Arnold",
   "style": "ipa"
}
우리의 스위프트 자료구조는 이렇게 생길 수 있다.
enum BeerStyle : String {
   case ipa
   case stout
   case kolsch
   // ...

}


struct Beer {
   let name: String
   let brewery: String
   let style: BeerStyle
}
이 JSON 문자열을 Beer 인스턴스로 변환하기위해서, 우리는 타입에다 Codable을 넣을 것이다.

Codable은 사실 Encodable & Decoable로 구성된 유니온 타입(union type)으로, 만약 한방향으로 변환하는 기능만 원하면 적절한 프로토콜을 적용시키면 된다. 이것이 스위프트4의 새로운 기능이다.

Codable은 디폴트 구현이 따라오는데, 대부분의 경우 여러분은 그냥 이 프로토콜을 적용시키고 공짜로 유용한 디폴트 동작을 만끽하면 된다.
enum BeerStyle : String, Codable {
  // ...

}


struct Beer : Codable {
  // ...

}

다음으로 그냥 디코더를 만들어야한다.
let jsonData = jsonString.data(encoding: .utf8)!


let decoder = JSONDecoder()

let beer = try! decoder.decode(Beer.self, for: jsonData)
이게 다다!  우리의 JSON 문서를 beer 인스턴스에 파싱하였다. 키의 이름과 타입이 서로 일치하기 때문에 다른 커스터마이징이 필요없었다.

여기서 try!를 사용하는 것은 의미가 없겠지만, 여러분의 앱에서는 똑똑하게 에러를 캐치하여 다뤄줘야한다. 나중에 에러 핸들링에대해 더 다뤄볼 것이다...

이제 우리가 인위적으로 만든 예제에서는 완벽하게 정돈되었다. 그러나 만약 타입이 일치하지 않는다면 어떨까?

키 이름을 커스터마이징하기
API에서 키 이름을 snake-case로 하는 경우는 종종 있고, 이 스타일은 스위프트 속성에대한 네이밍 가이드라인과는 맞지 않는다.

이 부분을 커스터마이징하려면 잠시 Codable 디폴트 구현을 맞춰줘야한다.

키는 컴파일러가 자동으로 생성한 "CodingKeys" 열거형에의해 처리된다. 이 열거형은 CodingKey를 따르는데, 이것은 인코딩된 양식으로 속성을 값에 연결할 수 있게 정의한다.

키를 커스터마이징하기위해 우리는 이것에대한 우리만의 구현을 작성할 것이다. 이 경우, 스위프트 네이밍과는 다르며, 우리는 키에대한 문자열 값을 제공할 수 있다.
struct Beer : Codable {
     // ...

     enum CodingKeys : String, CodingKey {
         case name
         case abv = "alcohol_by_volume"
         case brewery = "brewery_name"
         case style
   }
}
만약 beer 인스턴스를 받아서 JSON으로 인코딩하려하면, 새롱누 포맷으로 동작하는 것을 볼 수 있다.
let encoder = JSONEncoder()

let data = try! encoder.encode(beer)
print(String(data: data, encoding: .utf8)!)
이것은 아웃풋이다.
{"style":"ipa","name":"Endeavor","alcohol_by_volume":8.8999996185302734,"brewery_name":"Saint Arnold"}
여기서 표현된 양식은 매우 인간-친화적이지않다. 더 보기좋게 만들기위해 outputFormatting 프로퍼티로 JSONEncoder 아웃풋 포맷을 커스터마이징 할 수 있다.

디폴트값은 .compact인데, 이것은 위의 결과처럼 만들어준다. 이것을 .prettyPintted로 바꿔서 더 가독성좋은 아웃풋으로 만들 수 있다.
encoder.outputFormatting = .prettyPrinted

{
  "style" : "ipa",
  "name" : "Endeavor",
  "alcohol_by_volume" : 8.8999996185302734,
  "brewery_name" : "Saint Arnold"
}
JSONEncoderJSONDecoder 둘 다 그 동작을 커스터마이징하기위한 더 많은 옵션들이 있다. 더 일반적으로 해야하는 것중 하나는 날짜 파싱을 어떻게 커스터마이징할것인지이다.

날짜 다루기
JSON은 날짜를 표현하는데 데이터 타입이 없으므로 클라이언트와 서버가 동의한 방법대로 표현하여 시리얼라이즈하게된다. 일반적으로 ISO 8601 날짜 포멧팅 방식으로 처리하며 문자열로 시리얼라이즈한다.
프로 팁: ISO 8601을 포함한 다양한 포멧으로 변환해보려면 nsdateformatter.com에서 해볼 수 있다.
다른 포멧들은 아마 레퍼런스 날짜로부터 샌 초단위(혹은 밀리초단위)로, JSON 문서에서 Number로 시리얼라이즈 될 수 있다.

예전에는 이것을 우리 스스로 처리하여야 했었는데, 아마 우리 데이터 타입에 문자열 칸을 제공하고, 문자열 값에서 날짜를 marshal하기위해 DateFormatter를 사용한다. 그 반대도 마찬가지이다.

JSONEncoderJSONDecoder로 모두 해결할 수 있다. 한번 확이해보자. 날짜를 다루는 스타일로 디폴트로 .deferToDate를 사용할 것이다. 이것은 아래처럼 생겼다.
struct Foo : Encodable {
    let date: Date
}


let foo = Foo(date: Date())
try! encoder.encode(foo)

{
  "date" : 519751611.12542897

}
이것을 .iso8601 포멧으로 바꿀 수 있다.
encoder.dateEncodingStrategy = .iso8601

{
  "date" : "2017-06-21T15:29:32Z"
}
다른 JSON 인코딩 전략도 가능하다.
  • .formatted(DateFormatter): 지원하고자하는 표준 날짜 포멧 문자열이 없을때. 여러분의 date formatter 인스턴스를 제공한다.
  • .custom( (Date, encoder) throws -> Void ): 아주 커스텀하고 싶을때, 여기 블럭을 전달하여 제공된 인코더로 데이터를 인코딩 할 것이다.
  • .millisecondsSince1970.secondsSince1970: API에서 아주 일반적인 양식은 아니다. 이것은 인코딩된 표현에서 타임 지역 정보를 완전히 손실해버리기 때문에 별로 추천하지 않는다. 그런 이유로 누군가가 잘못된 가정을 생각하기 쉽게 만든다.
날짜를 디코딩하는 것은 필수적으로 같은 옵션을 가지지만, .custom에대해서는 .custom( (Decoder) throws -> Date )의 모양을 받는다. 따라서 우리는 디코더를 받고, 디코더 안에서 된 것이 무엇이든 그것에서 날짜로 만들 책임을 가진다.

Float 다루기
Float은 스위프트의 Float 타입과 JSON과는 꽤 맞지 않는 또다른 부분이다. 만약 서버가 유효하지 않은 "NaN"을 문자열로 보내면 어떻게 될까? 양수나 음수 Infinity는 어떨까? 이것들은 스위프트의 어떤 값에도 매칭되지 않는다.

디폴트로 구현된 것은 .throw이다. 디코더가 이 값들을 만나면 에러가 나타날 것이며, 우리가 처리하고 싶은대로 맵핑할 것을 제공할 수 있다.
{
  "a": "NaN",
  "b": "+Infinity",
  "c": "-Infinity"
}

struct Numbers : Decodable {
  let a: Float
  let b: Float
  let c: Float
}
decoder.nonConformingFloatDecodingStrategy =  .convertFromString(
     positiveInfinity: "+Infinity",
     negativeInfinity: "-Infinity",
     nan: "NaN"
)


let numbers = try! decoder.decode(Numbers.self, from: jsonData)dump(numbers)
이렇게 나타난다.
▿ __lldb_expr_71.Numbers

  -a: inf


  -b: -inf


  -c: nan
JSONEncodernonConformingFloatEncodingStrategy로 반대로도 할 수 있다.

주로 일어나는 경우의 그런것은 아니지만 어느날 유용하게 다가올 것이다.

데이터 다루기
가끔 base64로 인코딩된 문자열의 작은 비트의 데이터를 보내는 API를 마주칠 수도 있겠다.

이것을 자동으로 다루려면 이런 인코딩 전략중 하나를 JSONEncoder에 넣어준다.
  • .base64
  • .custom( (Data, Encoder) throws -> Void)
디코딩하기 위해서 JSONDecoder에 디코딩 전략을 넣어준다.
  • .base64
  • .custom( (Decoder) throws -> Data)
당연하게도 여기서는 .base64가 일반적인 선택일 될 것이지만, 커스텀화된 것이 필요하다면 블럭기반 전략에 사용하면 된다.

랩퍼 키(Wrapper Keys)
종종 API는 랩퍼 키를 포함할 것인데, 최상위 JSON 엔티티는 항상 오브젝트이다.

이런식으로 생겼을 것이다.
{
  "beers": [ {...} ]
}
스위프트에서 표현하기위해 우리는 이 응답에대해 새로운 타입을 만든다.
struct BeerList : Codable {
   let beers: [Beer]
}
실제로 이게 다다! 우리 키 이름이 일치하고 Beer이 이미 Codable이므로 그냥 동작한다.

루트 수준 배열
만약 API가 루트 엘리먼트로 배열을 반환하고 있다면 이런식으로 응답을 파싱한다.
let decoder = JSONDecoder()

let beers = try decoder.decode([Beer].self, from: data)
여기 타입으로 Array를 사용하고 있다는 점을 주목하자. Array<T>T가 디코딩가능할때만 디코딩 가능하다.

랩핑키 오브젝트(Object Wrapping Keys) 다루기
여기에는 여러분이 만날 수 있는 또다른 시나리오가 있다. 배열안에 각 오브젝트가 있는 한 배열 응답이 키로 랩핑되있다.
[
  {
   "beer" : {
     "id": "uuid12459078214",
     "name": "Endeavor",
     "abv": 8.9,
     "brewery": "Saint Arnold",
     "style": "ipa"
   }
  }
]
이 키를 붙잡아두기위해 위의 랩핑 타입 방법을 쓸 수도 있지만, 이 구조는 이미 강타입으로 디코딩가능하게 구현되있음을 인지하는 것이 더 쉬우 방법일 수 있다.

보이는가?
[[String: Beer]]
혹은 이런 경우가 더 읽기 쉬울지도 모르겠다.
Array<Dictionary<String, Beer>>
Array<T>이 디코딩가능한것처럼, KT가 둘 다 디코딩가능하면 Dictionary<K, T>도 그렇다.
let decoder = JSONDecoder()

let beers = try decoder.decode([[String:Beer]].self, from: data)
dump(beers)

▿ 1 element
  ▿ 1 key/value pair
    ▿ (2 elements)
      - key: "beer"
      ▿ value: __lldb_expr_37.Beer
        - name: "Endeavor"
        - brewery: "Saint Arnold"
        - abv: 8.89999962


       - style: __lldb_expr_37.BeerStyle.ipa

더 복잡하게 네스티드된 응답(Nested Response)
때론 우리 API 응답은 간단하지 않다. 아마 제일 상위에는 응답의 오브젝트를 정의하는 키가 단순히 하나가 아니고, 여러 컬랙션을 받거나 페이지로 된 정보를 받을 것이다.

예를 들어보자.
{
   "meta": {
       "page": 1,
       "total_pages": 4,
       "per_page": 10,
       "total_records": 38
   },
   "breweries": [
       {
           "id": 1234,
           "name": "Saint Arnold"
       },
       {
           "id": 52892,
           "name": "Buffalo Bayou"
       }
   ]
}
json을 인코딩/디코딩 할때, 스위프트에서 실제로 타입을 중첩할 수 있고 구조체 표현을 가질 수 있다.
struct PagedBreweries : Codable {
   struct Meta : Codable {
       let page: Int
       let totalPages: Int
       let perPage: Int
       let totalRecords: Int
       enum CodingKeys : String, CodingKey {
           case page
           case totalPages = "total_pages"
           case perPage = "per_page"
           case totalRecords = "total_records"
       }
   }

   struct Brewery : Codable {
       let id: Int
       let name: String
   }

   let meta: Meta
   let breweries: [Brewery]
}
이런 방법의 커다란 이점은 다른 응답을 같은 타입의 오브젝트로 가질 수 있다는 점이다(이 경우 아마 보이는것처럼 응답 리스트에서 "brewery"idname만 가지지만, brewery를 선택하면 더 많은 속성을 가진다.(but has more attributes if you select the brewery by itself)) 여기서 Brewery 타입은 중첩되있으므로 다른 Brewery타입을 만들어서 다른 구조체를 디코딩/인코딩할 수 있다.

더 깊은 커스터마이징
지금까지 무거운 작업도 디폴트 EncodableDecoable 구현에 의존해왔다.

대부분 이렇게 처리하겠지만, 결국 우리는 인코딩과 디코딩을 더 컨트롤하기위해 깊이 들어가야 할것이다.

커스텀 인코딩
시작하면서, 컴파일러가 공짜루 우리에게 제공해줬던 것을 커스텀하는 버전을 만들어 볼 것이다. 인코딩으로 시작해보자.
extension Beer {
  func encode(to encoder: Encoder) throws {

   }
}
그리고 이 예제를 좀 더 다루기위해 beer 타입에 새로운 필드 몇개도 추가하고 싶다.
struct Beer : Coding {
   // ...

   let createdAt: Date
   let bottleSizes: [Float]
   let comments: String?


   enum CodingKeys: String, CodingKey {
       // ...

       case createdAt = "created_at",
       case bottleSizes = "bottle_sizes"
       case comments
   }
}
이 메소드에는 인코더를 넣고, "컨테이너(container)"를 받아서, 여기에 값을 인코딩한다.

컨테이너가 무엇일까?
컨테이너는 몇가지 타입중에 하나가 될 수 있다.
  • Keyed Container: 키로 값을 제공함. 이것은 원래 딕셔너리임.
  • Unkeyed Container: 키 없이 정렬된 값을 제공함. JSONEncoder에서는 배열을 의미함.
  • Single Value Container: 담겨진 엘리먼트의 어떤 종류도 없이 가공되지 않은 값을 만듦.
우리의 모든 프로퍼티를 인코딩하기위해 우리는 먼저 컨테이너를 받아야한다. 이 포스트 처음에 나왔던 JSON 구조체를 보면, keyed container가 필요해보인다.
var container = encoder.container(keyedBy: CodingKeys.self)
여기서 2가지를 짚어보자.
  • 컨테이너는 우리가 변경할 수 있도록 반드시 mutable 프로퍼티여야하는데, 변수를 var로 선언해야한다.
  • 키들을 지정해야하는데(그리하여 프로퍼티와 키를 매핑시킨다) 이 컨테이너로 인코딩시킬 수 있는 키가 무엇인지 안다.
후자는 아주 강력한 점이 될 것이다.

다음으로 컨테이너에 값을 인코딩한다. 이 호출들은 모두 에러를 던지므로, 각 줄마다 try로 시작할 것이다.
try container.encode(name, forKey: .name)
try container.encode(abv, forKey: .abv)
try container.encode(brewery, forKey: .brewery)
try container.encode(style, forKey: .style)
try container.encode(createdAt, forKey: .createdAt)
try container.encode(comments, forKey: .comments)
try container.encode(bottleSizes, forKey: .bottleSizes)
comments 필드에서, Encodable의 디폴트 구현은 옵션 값에 encodeIfPresent를 사용한다. 만약 nil이면 인코딩된 표현에서 키는 잃어버릴 것이다는 의미이다. 이것은 API에대해 일반적으로 좋은 해결책이 아니므로, 여기에 null 겂아 있다해도 키를 가지도록 하는 방법이 좋은 방법이다. 여기서 우리는 encodeIfPresent(_:forKey:) 대신 encode(_:forKey:)를 사용하여 이 키를 포함하는 아웃풋으로 만든다.

bottoleSizes 값은 자동으로 인코딩되있지만, 어떤 이유로 커스터바이징이 필요하다면 우리만의 컨테이너를 만들어야한다. 여기서 우리는 각 항목별로 처리하고(부동소숫점을 반올림하여) 순서대로 컨테이너에 추가한다.
var sizes = container.nestedUnkeyedContainer(
     forKey: .bottleSizes)

try bottleSizes.forEach {
     try sizes.encode($0.rounded())
}
그리고 끝났다! 여기에는 부동소수점이 따르는 전략이나 날짜 포멧팅에대한 얘기는 없다는 점을 인지하자. 사실 이 메소드는 전적으로 JSON agnostic인데, 이것이 설계의 부분이다. 인코딩과 디코딩 타입은 제네릭 기능이고, 포멧은 필요한 사람에의해 쉽게 명세된다.

이제 우리가 인코딩한 JSON은 이렇게 생겼다.
{
  "comments" : null,
  "style" : "ipa",
  "brewery_name" : "Saint Arnold",
  "created_at" : "2016-05-01T12:00:00Z",
  "alcohol_by_volume" : 8.8999996185302734,
  "bottle_sizes" : [
   12,
   16
  ],
  "name" : "Endeavor"
}
여기서 부동소수점 값이 원래 JSON 문서에서는 8.9였는데 메모리에 표현되면서 같지 않은 숫자로 되버린것은 의미없다. 만약 숫자의 정확한 표현이 필요하다면, NumberFormater로 매번 손수 포멧팅하길 원할지도 모르겠다. 특별히 통화를 다루는 API는 종종 정수형 값으로 센트 숫자를 보낸고(안전하게 반올림될 수 있) 100.0으로 나눠서 달러 값을 얻어낸다.있다

이제 반대로도 할수 있다. 다음으로 Decodable 프로토콜 요구사항에대한 구현을 작성해보자.

커스텀 디코딩
디코딩은 원래 다른 생성자를 작성하는 것이다.
extension Beer {
   init(from decoder: Decoder) throws {

   }
}
이번에도 디코더에서 컨테이너를 만들어야한다.
let container = try decoder.container(keyedBy: CodingKeys.self)
모든 기본 프로퍼티를 디코딩할 수 있다. 각각의 경우에서 우리는 기대하는대로 타입을 지정해야한다. 만약 타입이 매치가 안된다면 DecodingError.TypeMismatch가 던져지며 무슨 문제인지 알려주는 정보를 받는다.
let name = try container.decode(String.self, forKey: .name)

let abv = try container.decode(Float.self, forKey: .abv)

let brewery = try container.decode(String.self,
     forKey: .brewery)

let style = try container.decode(BeerStyle.self,
     forKey: .style)

let createdAt = try container.decode(Date.self,
     forKey: .createdAt)

let comments = try container.decodeIfPresent(String.self,
     forKey: .comments)
같은 메소드를 bottleSizes 배열에도 상ㅇ할 수 있는데, 비슷한 방법으로 각 값을 처리할 수 있다. 여기, 새로운 인스턴스에 저장하기 전에 값을 반올림한다.
var bottleSizesArray = try container.nestedUnkeyedContainer(forKey: .bottleSizes)

var bottleSizes: [Float] = []

while (!bottleSizesArray.isAtEnd) {
   let size = try bottleSizesArray.decode(Float.self)
   bottleSizes.append(size.rounded())
}
컨테이너에 더이상 엘리먼트가 없을때까지 계속 값을 디코딩할 것이다.

이제 모든 이 변수들이 정의되고, 디폴트 생성자 호출에대한 모든 대답을 가지게 되었다.
self.init(name: name,
             brewery: brewery,
             abv: abv,
             style: style,
             createdAt: createdAt,
             bottleSizes: bottleSizes,
             comments: comments)
encode(to encoder:)init(from decoder:)의 커스텀 구현으로, JSON 결과를 우리 타입에 맵핑시키는데 더욱 컨트롤할 수 있게 되었다.

오브젝트 평평하게 만들기(Flattening Objects)
JSON이 우리가 고려하지 못했던 중첩 수준을 가진다면 어떻게 될까? 위 예제를 수정하여 abvstyle이 이렇게 표현되도록 해보자.
{
  "name": "Lawnmower",
  "info": {
    "style": "kolsch",
    "abv": 4.9
  }
  // ...
}
이 구조로 동작하려면 인코딩 디코딩 구현을 모두 커스터마이징 해야한다.

중첩된 키를 위해 열거형을 정의(하고 메인 CodingKeys 열거형으로부터 제거)하면서 시작해 볼 것이다.
struct Beer : Codable {
  enum CodingKeys: String, CodingKey {
     case name
     case brewery
     case createdAt = "created_at"
     case bottleSizes = "bottle_sizes"
     case comments
     case info // <-- NEW

  }

  case InfoCodingKeys: String, CodingKey {
     case abv
     case style
  }
}
우리가 값을 인코딩할때 제일 먼저 info 컨테이너에 참조를 넣어야한다. (which if you recall is a keyed container)
func encode(to encoder: Encoder) throws {


     var container = encoder.container(
         keyedBy: CodingKeys.self)
     var info = try encoder.nestedContainer(
         keyedBy: InfoCodingKeys.self)
     try info.encode(abv, forKey: .abv)
     try info.encode(style, forKey: .style)

     // ...

}
디코딩가능한 구현을 만들기 위해 반대로도 할 수 있다.
init(from decoder: Decoder) throws {
   let container = try decoder.container(
         keyedBy: CodingKeys.self)

   let info = try decoder.nestedContainer(
         keyedBy: InfoCodingKeys.self)
   let abv = try info.decode(Float.self, forKey: .abv)
   let style = try info.decode(BeerStyle.self,
         forKey: .style)

   // ...

}
이제 인코딩된 포멧에 중첩된 구조를가 가질 수 있게 되었으나 우리 오브젝트에서는 평평하게(flatten) 만들었다.

자식 오브젝트 만들기
brewery가 간단한 문자열로 전달되고 분리된 Brewery 타입을 유지하고 싶다고 해보자.
{
  "name": "Endeavor",
  "brewery": "Saint Arnold",
  // ...
}
이 경우에는 다시 encode(to encoder:)init(from decoder:) 의 커스텀 구현을 해줘야한다.
func encode(to encoder: Encoder) throws {
     var container = encoder.container(keyedBy:
         CodingKeys.self)

     try encoder.encode(brewery.name, forKey: .brewery)

     // ...


}


init(from decoder: Decoder) throws {
     let container = try decoder.container(keyedBy:
         CodingKeys.self)
     let breweryName = try decoder.decode(String.self,
         forKey: .brewery)
     let brewery = Brewery(name: breweryName)

     // ...

}

상속
아래 클래스들을 가진다고 생각해보자.
class Person : Codable {
   var name: String?

}


class Employee : Person {
   var employeeID: String?

}
Person 클레스를 상속하여 Codable을 따르게 되었으나, Employee 인스턴스를 인코딩하려면 무슨일이 일어날까?
let employee = Employee()
employee.employeeID = "emp123"
employee.name = "Joe"


let encoder = JSONEncoder()
encoder.outputFormatting = .prettyPrinted

let data = try! encoder.encode(employee)
print(String(data: data, encoding: .utf8)!)

{
  "name" : "Joe"
}
우리가 원하던 결과는 아니다. 자동으로 생성된 구현이 자식클래스에는 잘 동작하지 않는다. 따라서 다시 인코드/디코드 메소드를 커스터마이징 해야한다.
class Person : Codable {
   var name: String?



   private enum CodingKeys : String, CodingKey {
       case name
   }

   func encode(to encoder: Encoder) throws {
       var container = encoder.container(keyedBy: CodingKeys.self)
       try container.encode(name, forKey: .name)
   }
}
자식클래스에도 같은 일을 할 것이다.
class Employee : Person {
   var employeeID: String?


   private enum CodingKeys : String, CodingKey {
       case employeeID = "emp_id"
   }

   override func encode(to encoder: Encoder) throws {
       var container = encoder.container(keyedBy: CodingKeys.self)
       try container.encode(employeeID, forKey: .employeeID)
   }
}
이렇게 된다.
{
  "emp_id" : "emp123"
}
흠, 이것도 원하던 결과는 아니다. 우리는 부모클래스 구현의 encode(to:)으로 흘러가야한다.

당신은 그냥 부모클래스를 호출하여 인코더에서 넘겨줄 생각일 수 있다. 이것도 동작은 하지만, 현재 스냅샷은 EXC_BAD_ACCESS을 낸다. 내 생각엔 버그같고, 나중에 고쳐질 것이다.

만약 위에처럼 했다면, 같은 컨테이너하에 합쳐진 속성들을 얻을 수 있다. 그러나 스위프트팀은 여러 타입에대해 같은 컨테이너를 재사용하는 것에대해 이야기한다.
만약 공유되는 컨테이너가 필요하면 여전히 super.encode(to: encoder)과 super.init(from: decoder)을 호출할 수 있지만, 우리는 더 안전한 컨테이너화시킨 방법을 추천한다.
그 이유로는, 부모클래스는 우리가 설정한 값을 덮어쓸 수 있지만 우리는 그것에대해 모를 수 있다는 것이다.

대신 우리는 부모클래스의 인코더를 얻기위해 특별한 메소드를 사용할 수 있다. 이 인코더는 이미 컨테이너에서 가지고 있다.
try super.encode(to: container.superEncoder())
이렇게 된다.
{
  "super" : {
   "name" : "Joe"
  },
  "emp_id" : "emp123"
}
이렇게하면 "super"라는 새로운 키에 인코딩된 부모클래스를 만들어낸다. 필요하면 이 키 이름을 커스터마이징 할 수 있다.
enum CodingKeys : String, CodingKey {
  case employeeID = "emp_id"
  case person
}


override func encode(to encoder: Encoder) throws {
  // ...

  try super.encode(to:
     container.superEncoder(forKey: .person))
}
아래의 결과가 나온다.
{
  "person" : {
   "name" : "Joe"
  },
  "emp_id" : "emp123"
}
부모클래스에서 일반적인 구조에 접근하는것은 JSON 파싱을 간단화시킬 수 있고, 어던 경우에는 코드 중복을 줄일 수 있다.

UserInfo
인코딩 디코딩 중에 동작을 변경하거나 오브젝트에 컨텍스트를 제공해야하기위해 커스텀 데이터로 표현해야 한다면, 인코딩 디코딩 중에 사용자 정보(User Info)를 전달할 수 있다.

예를들어 고객을위한 이런 JSON을 만들어주는 버전1의 API를 물려받았다고 해보자.
{
  "customer_name": "Acme, Inc",  // old key name
  "migration_date": "Oct-24-1995", // different date format?
  "created_at": "1991-05-12T12:00:00Z"
}
여기서 우리는 created_at 필드와 다른 날짜 양식을 가지는 migration_date 필드를 가지고 있다. 그리고 이름 프로퍼티가 그냥 name으로 바뀌었다고 가정하자.

이 상황은 이상적이지 않은 상황이 분명하지만, 실제로 일어나고, 종종 더러운 API를 물려받기도 한다.

우리를위해 중요한 값들을 담아둘 특별한 사용자 정보 구조체를 정의하자.
struct CustomerCodingOptions {
  enum ApiVersion {
     case v1
     case v2
  }
  let apiVersion = ApiVersion.v2
  let legacyDateFormatter: DateFormatter

  static let key = CodingUserInfoKey(rawValue: "com.mycompany.customercodingoptions")!

}
이제 이 구조체의 인스턴스를 만들어서 인코더와 디코더에 보낼 수 있다.
let formatter = DateFormatter()
formatter.dateFormat = "MMM-dd-yyyy"

let options = CustomerCodingOptions(apiVersion: .v1, legacyDateFormatter: formatter)

encoder.userInfo = [ CustomerCodingOptions.key : options ]


// ...
encode 메소드 안의 모습이다.
func encode(to encoder: Encoder) throws {    var container = encoder.container(keyedBy: CodingKeys.self)


    // here we can require this be present...


    if let options = encoder.userInfo[CustomerCodingOptions.key] as? CustomerCodingOptions {



        // encode the right key for the customer name


        switch options.apiVersion {


        case .v1:


            try container.encode(name, forKey: .legacyCustomerName)


        case .v2:


            try container.encode(name, forKey: .name)

        }


        // use the provided formatter for the date


        if let migrationDate = legacyMigrationDate {


            let legacyDateString = options.legacyDateFormatter.string(from: migrationDate)


            try container.encode(legacyDateString, forKey: .legacyMigrationDate)

        }


    } else {

        fatalError("We require options")

    }



    try container.encode(createdAt, forKey: .createdAt)

}
디코드 생성자에도 정확하게 같은 것을 할 수 있다.

바깥으로부터 옵션을 제공받아 파싱을 더욱 컨트롤할 수 있는 좋은 방법이다. 게다가 DateFormatter같이 생성할때 비싼 오브젝트를 재사용할 수 있다.

다이나믹 코딩 키(Dynamic Coding Keys)
지금까지 이 가이드에서는 스위프트 네이밍과 다를때 코딩키를 표현하려고 enum을 사용했었다. 가끔 이것이 불가능할 수도 있다. 아래의 경우를 생각해보자.
{
  "kolsh" : {
   "description" : "First only brewed in Köln, Germany, now many American brewpubs..."
  },
  "stout" : {
   "description" : "As mysterious as they look, stouts are typically dark brown to pitch black in color..."
  }
}
beer 스타일의 리스트이나, 키들은 실제로 스타일의 이름이다. API는 시간이 지나면서 바뀌고 커질 수 있기 때문에 모든 가능한 상황을 표현할 수 없을 수 있다.

대신에 우리는 CodingKey의 더 다이나믹한 구현을 만들 수 있다.
struct BeerStyles : Codable {
  struct BeerStyleKey : CodingKey {
   var stringValue: String
   init?(stringValue: String)? {
     self.stringValue = stringValue
   }
   var intValue: Int? { return nil }
   init?(intValue: Int) { return nil }

   static let description = BeerStyleKey(stringValue: "description")!

  }

  struct BeerStyle : Codable {
   let name: String
   let description: String
  }

  let beerStyles : [BeerStyle]
}
CodingKeyStirngInt 값 프로퍼티를 둘 다 필요로하고 생성자를 필요로한다. 그러나 이 경우 정수 키를 지원하지 않아도 된다. 또한 스태틱 "destcription 속성을 위한 스태틱 키를 정의했었는데, 바뀌지 않을 것이다.

디코딩을 하며 시작해보자.
init(from decoder: Decoder) throws {
   let container = try decoder.container(keyedBy: BeerStyleKey.self)

   var styles: [BeerStyle] = []
   for key in container.allKeys {
       let nested = try container.nestedContainer(keyedBy: BeerStyleKey.self,
           forKey: key)
       let description = try nested.decode(String.self,
           forKey: .description)
       styles.append(BeerStyle(name: key.stringValue,
           description: description))
   }

   self.beerStyles = styles
}
여기서 우리는 컨테이너 안에서 찾은 모든 키들을 다이나믹하게 돌고, 그 키에대한 컨테이너 참조를 잡아둔다. 그리고 여기서 description을 뽑아낸다.

namedescription을 사용하여 직접 BeeryStyle 인스턴스를 생성하고 배열에 추가할 수 있다.

인코딩의 경우는 어떨까?
func encode(to encoder: Encoder) throws {
   var container = try encoder.container(keyedBy: BeerStyleKey.self)
   for style in beerStyles {
       let key = BeerStyleKey(stringValue: style.name)!

       var nested = try container.nestedContainer(keyedBy: BeerStyleKey.self,
           forKey: key)
       try nested.encode(style.description, forKey: .description)
   }
}
여기서 우리는 배열에 있는 모든 스타일들을 돌고, 스타일 이름을 위해 키를 만들어, 키에 컨테이너를 만든다. 그런다음 그 컨테이너에 description을 인코딩하기만 하면 끝난다.

우리가 볼 수 있듯, 커스텀 CodingKey를 만드는 것으로 우리가 다룰 수 있는 응답들의 타입에 많은 유연함을 제공해준다.

에러 처리
지금까지 우리는 어떠한 에러도 다루지 않았다. 이것들은 우리가 실행시킬지도 모르는 에러들이 몇개 있다. 각각은 연관된 값을 제공한다(DecodingError.Context는 언제, 어떤  문제가 생겼는지 알려주는 디버깅 설명을 제공해준다).
  • DecodingError.dataCorrupted(Context): 이 데이타는 오염되었다(즉, 우리가 생각한대로 생기지 않았다). 이것은 여러분이 디코더에 제공한 data가 JSON이 전혀 아니지만, 아마도 실패한 API 콜에서 HTML 에러 페이지일 수 있다.
  • DecodingError.keyNotFound(CodingKey, Context): 필요한 키가 발견되지 않았다. 이것은 질문에서 키를 보냈고 컨텍스트는 어디서, 왜 이런 일이 일어났는지에대한 정보를 제공한다. 이것을 받아다가 몇몇 키를 위한 fallback value를 적절하게 줄 수 있다.
  • DecodingError.typeMismatch(Any.Type, Context): 한 타입을 기대했지만 다른것을 찾았다. 아마도 그 데이터 포멧이 첫번째 버전의 API에서 변경되었을 것이다. 이 에러를 잡고 다른 타입을 사용한 데이터 찾아볼 수 있다.
인코더와 디코더에서 나온 에러들은 문제를 진단하는데 굉장히 유용하며, 특정 상황에 다이나믹하게 적용시킬 수 있는 유연함을 제공하여 적절하게 이것들을 다룰 수 있다.

한가지 이런 예로서 옛날 버전의 API 응답을 마이그레이션하는 것이다. 예를들어 디스크 어딘가에 영속의 캐시에 넣으려고 한 버전의 오브젝트를 인코딩했다고 하자. 나중에 포멧이 바뀌었지만 디스크의 자료는 그대로 있다. 이것을 로드해오려할때 에러가 발생할 수 있는데, 깔끔하게 새로운 데이터 포멧에 마이그레이션하기위해 처리할 수 있다.

더 읽을거리
  • Codable.swift: 스위프트가 오픈소스화되어서 좋은 점 중 하나는 이것이 어덯게 구현되었는지 그냥 볼 수 있다는 점이다. 꼭 한번 보자!
  • Using JSON with Custom Types: 애플이 제공하는 playground 샘플인데, 더 복잡한 JSON 파싱 시나리오를 볼 수 있다.

결론
여기까지 새로운 스위프트 4의 Codable API를 어떻게 사용하는지에대해 빠르게 훑어보았다. 추가하고 싶은게 있나? 아래에 댓글을 달아달라.

이 작업이 마음에 들었는가? 그렇다면 NSScreencast도 마음에 들것이라 생각된다.



이 블로그는 공부하고 공유하는 목적으로 운영되고 있습니다. 번역글에대한 피드백은 언제나 환영이며, 좋은글 추천도 함께 받고 있습니다. 피드백은 

으로 보내주시면 됩니다.



WRITTEN BY
tucan.dev
개인 iOS 개발, tucan9389

트랙백  0 , 댓글  0개가 달렸습니다.
secret